dear god

Get Free Music at BlogRion
Get Free Music BlogRion

Free Music at BlogRion

Selamat Datang

"Selamat Datang" di BLOG nya Anak MIPA

Jumat, 26 Januari 2018

SIFAT BAHAN

A. Atom, Ion, dan Molekul 

Atom, Ion, dan Molekul. Partikel materi adalah bagian terkecil dari suatu materi. Setiap materi mengandung partikel-partikel kecil yang menyusun zat tersebut yang dapat berupa atom, ion, dan molekul. Sampai saat ini belum ada yang mengetahui bentuk partikel terkecil zat, para ilmuwan berupaya mengembangkan beragam modelnya dari data yang mereka kumpulkan. Setiap zat yang berbeda disusun oleh partikel-partikel terkecil yang berbeda pula. Misalnya, air disusun oleh partikel-partikel terkecil yang berbeda dengan partikel-partikel terkecil yang menyusun gula pasir.

Sekitar 450 tahun sebelum Masehi ahli filsafat Yunani Leucippus dan Democritus menyatakan bahwa semua materi disusun oleh partikel-partikel yang sangat kecil sekali dan tak dapat dibagi-bagi lagi yang disebut atom. Atom berasal dari bahasa Yunani, yakni atomos ( a: tidak dan tomos: terbagi). Pada tahun 1808 seorang guru kimia dari Inggris John Dalton (1766-1844) mengajukan pemikiran tentang atom yang dikenal dengan istilah “model atom Dalton” dengan intisari sebagai berikut:

  1. Setiap unsur terdiri atas partikel-partikel terkecil yang tak dapat dibagi-bagi lagi, disebut atom.
  2. Semua atom dari unsur yang sama memiliki ukuran dan massa yang sama. Atom-atom dari unsur yang berbeda memiliki massa yang berbeda pula. Dengan demikian, banyaknya macam atom sama dengan banyaknya macam unsur.
  3. Atom-atom tidak dapat dirusak . Atom-atom tidak dapat dimusnahkan atau diciptakan melalui reaksi kimia.
  4. Melalui reaksi kimia, atom-atom dari pereaksi akan memiliki susunan yang baru dan akan saling terikat satu sama lain dengan rasio atau perbandingan bilangan tertentu.
Menurut Dalton semua materi terdiri atas atom. Kita akan mempelajari tentang partikel-partikel materi yang meliputi atom, molekul, dan ion.

a. Atom
Atom merupakan bagian terkecil dari unsur. Atom bersifat tidak bermuatan (netral). Setiap unsur terdiri dari sejenis atom, artinya bahwa atom-atom unsur yang sama mempunyai sifat yang sama. Oleh sebab itu, atom unsur diberi lambang yang sama dengan lambang unsurnya. Jadi, atom nitrogen diberi lambang N dan atom karbon dengan lambang C. Atom unsur yang satu berbeda dengan atom unsur yang lainnya. Perbedaan itu dapat diibaratkan bahwa butir-butir jagung tidak sama dengan butir-butir beras.

b. Molekul
Atom-atom memiliki kecenderungan stabil dengan cara mengikat atom lain yang sama atau tidak sama. Molekul yang terdiri dari atom-atom yang sama kita sebut molekul unsur, sedangkan yang terdiri dari atom-atom yang berbeda disebut molekul senyawa.
Contoh:
  • molekul unsur : molekul O2 , molekul H2 , molekul N2 , molekul Cl2 .
  • molekul senyawa : molekul air (H2 O); molekul gula (C6 H12 O6 ); molekul garam dapur NaCl
Gambar perbedaan antara atom, molekul unsur, dan molekul senyawa.
Molekul
c. Ion
Ion adalah atom atau molekul yang bermuatan listrik, dapat positif maupun negatif. Ion bermuatan negatif disebut anion, terjadi karena atom atau molekul menangkap elektron, satu atau lebih. Sedangkan ion yang bermuatan positif disebut kation, terjadi karena atom atau molekul melepaskan satu atau lebih elektron. Ion yang terdiri dari satu atom disebut ion tunggal, dan ion yang terdiri dari dua atom atau lebih disebut ion poliatom.
Ion tunggal dan poliatom
Kation Anion
Tunggal PoliatomTunggalPoliatom
Na+ NH4+Cl -NO3 -
K +-Br -SO4 2-
Mg2 +-S2 -PO4 3-
Al3+ -S3 -OH
H +--CO3-
Ca+---
Menghubungkan Konsep Atom, Molekul, dan Ion dengan Produk Kimia Sehari-hari
1. Pembuatan detergen

Oleh karena berkurangnya tanaman yang menghasilkan minyak sementara jumlah penduduk semakin banyak maka kebutuhan manusia akan sabun tidak tercukupi. Melalui kemajuan teknologi, ditemukanlah bahan pencuci sintetis, yaitu detergen. Ada dua jenis detergen sebagai berikut.
  • Detergen keras: sukar diuraikan oleh bakteri sehingga menimbulkan pencemaran lingkungan.
  • Detergen lunak: dapat diuraikan oleh bakteri sehingga tidak terlalu menimbulkan pencemaran.

Adapun bahan pembuat detergen adalah sebagai berikut.

a. Bahan penurun tegangan permukaan
Bahan penurun tegangan permukaan digunakan untuk memudahkan mengikat kotoran dan menimbulkan busa, antara lain sebagain berikut.
  • Alkil Benzen Sulfonat (ABS) + NaOH menghasilkan Natrium Alkil Benzen Sufonat (detergen keras).
  • Lauril Asam Sulfat (LAS) + NaOH menghasilkan Natrium Lauril Sulfat (detergen lunak)

b. Bahan penunjang
Bahan penunjang pada detergen digunakan STPP (Sodium Tri Poli Phosphat/Natrium Tri Poli Phosphat) berfungsi menunjang kerja bahan penurun tegangan permukaan.

c. Bahan pengisi
Bahan pengisi detergen digunakan untuk memperbesar volume materi.

b. Bahan pengikat
Sebagai bahan pengikat digunakan air, yaitu untuk mencampurkan semua bahan (media).

b. Bahan tambahan
Sebagai bahan tambahan digunakan CMC (Carboxy Metyl Cellulose), agar kotoran yang terikat detergen tidak melekat kembali ke bahan yang dicuci.

b. Bahan pewangi dan pewarna
Bahan pewangi dan pewarna digunakan agar detergen mempunyai warna dan aroma yang spesifik untuk membedakan dengan merk lain dan sesuai dengan warna dan aroma yang diminati konsumen. Semua bahan dicampur dan dapat dibentuk pasta (krim) atau disemprotkan lewat menara sehingga menghasilkan butiran-butiran.

2. Pembuatan margarin
Proses pembuatan margarin adalah sebagai berikut.
a. Minyak cair + soda kaustik encer akan didapat minyak cair yang bebas dari asam,
warna, dan zat lain yang mengganggu.
b. Minyak cair hidrogenasi__> lemak

Keterangan:
Jumlah soda kaustik encer yang dibutuhkan, disesuaikan dengan kebutuhan atau sesuai hasil analisis (pengalaman hasil pengamatan). Caustik soda (NaOH) dan asam bebas pada minyak membentuk lapisan sabun yang mudah dipisahkan dengan minyaknya (selanjutnya minyak dicuci dengan air sampai bebas dari sabun dan NaOH. Jika minyak yang didapat berwarna, maka warna tersebut dapat dihilangkan dengan tanah adsorben, kemudian disaring dengan penekanan/ditekan. Minyak yang didapat di hidrogenasi sehingga didapat margarin.

Tahap selanjutnya, menghilangkan bau dengan mengalirkan uap air panas ke dalam minyak
hasil hidrogenasi dalam ruang hampa pada suhu + 200oC.
Agar rasanya lebih enak dan menarik margarin hasil hidrogenasi diberi tambahan zat-zat
aditif seperti air, garam, pewarna, dan penyedap bau.

3. Pembuatan air murni
Sebagai bahan pelarut, air murni sangat dibutuhkan pada pembuatan bahan-bahan kimia. Proses pembuatan air murni sebagai berikut.

Rangkaian alat pembuatan air murni
Air pada labu didih dipanaskan hingga mendidih. Uap yang terjadi dialirkan ke pipa pendingin. Pada pipa pendingin uap air mengembun. Uap air yang mengembun adalah air murni.

4. Pembuatan asam sulfat

Pembuatan asam sulfat dapat dilakukan dengan proses kamar timbal sebagai berikut.
  • Membakar belerang atau pirit, sehingga dihasilkan SO2
  • SO2 dialirkan ke ruangan penangkap debu untuk membersihkan SO2
  • Gas SO2 panas dialirkan ke ruangan berturut-turut: menara glover, kamar timbal, menara Guy Lussac
Reaksi yang terjadi:
2S + 3O2 + 2H2 O --> 2H2 SO4
5. Pembuatan garam dapur
Garam dapur digunakan oleh ibu-ibu bumbu masak. Garam dapur berasa asin, masakan yang kurang garam berasa hambar. Molekul garam dapur terdiri dari satu atom natrium (Na) yang bergabung dengan satu atau chlor (Cl) menjadi molekul NaCl. Pembuatan garam dapur dapat dilakukan dengan proses sebagai berikut.
  • Air laut masuk ke kolam/tambak penampungan air laut, saat terjadi pasang naik.
  • Air laut yang sudah masuk kolam, mengalami pemanasan oleh sinar matahari, sehingga didapat kristal-kristal garam dapur NaCl yang belum steril.
  • Kristal garam dapur diambil di proses di pabrik guna sterilisasi dan pembersihan.

Molekul Unsur dengan Molekul Senyawa
Molekul termasuk partikel yang terdiri atas atom-atom yang bergabung oleh adanya gaya ikat elektrostatistik. Atom-atom yang membentuk molekul dapat sejenis/sama dapat juga tidak sejenis. Perhatikan tabel berikut ini untuk dapat membandingkan molekul unsur dengan molekul senyawa.

Molekul Unsur
Atom-atom sejenis yang bergabungNama Molekul yang terbentuk ditulis
-12345678
1. OO------oksigen
2. HH------hidrogen
3. NN------nitrogen
4. BrBr------bromin
5. FF------iodium
6. II------flourin
7. OOO-----ozon
8. PPPP----fosforus
9. SSSSSSSSbelerang
Molekul yang terdiri atas atom-atom sama/sejenis disebut molekul unsur
Dari tabel di atas tampak bahwa molekul unsur ada yang terdiri dari 2 atom, ada yang 3 atom, ada yang 4 atom, ada yang 8 atom, bahkan ada yang terdiri atas atom-atom yang jumlahnya sangat banyak karena berapapun jumlah atomnya akan membentuk satu molekul sehingga disebut molekul raksasa, seperti yang terjadi pada karbon (C), silikon (Si) dan Germanium (Ge).
Molekul senyawa
Atom-atom sejenis yang bergabungNama zatMolekul senyawa yang terbentuk ditulis dengan simbol
-12345678
1. NaCl------garam dapur
Penulisan demikian lebih efisien
2. HOO-----air
3. COO-----karbondioksida
4. NHHH----amonia
5. CHHHH---metana
6. CCHHHH--etena
7. CCCCCCHHglukosa
Penulisan demikian tidak efisien
Molekul yang terdiri atas dua atom atau lebih yang berbeda jenisnya disebut molekul senyawa.
sumber : http://www.mediabelajar.info/2013/11/atom-ion-molekul.html

 

B. Sifat Bahan & Pemanfaatannya dalam Kehidupan


Dalam bab ini akan dibahas sifat bahan-bahan di sekitar kita dan pemanfaatannya dalam kehidupan sehari-hari.
A. Bahan Serat
Istilah serat sering dikaitkan dengan sayur-sayuran, buah-buahan, dan tekstil (bahan pembuat pakaian).
Secara kimiawi serat adalah suatu polimer.
Berdasarkan asal bahan penyusunnya serat dikelompokkan menjadi serat alami (polimer alami) dan serat sintetis (polimer sintetis).
1) Serat Alami
Bahan serat alami diperoleh dari tumbuhan, hewan, dan mineral.
  • Serat tumbuhan diperoleh dari selulosa tumbuhan, misalnya dari kapas, kapuk, dan rami. Contoh tekstil dari selulosa adalah katun dan linen.
  • Serat hewan berupa serat protein dapat diperoleh dari rambut domba, benang jala yang dihasilkan oleh laba laba, dan kepompong ulat sutera. Contoh tekstil dari serat protein yaitu wol dan sutera.
  • Serat mineral, umumnya dibuat dari mineral asbetos.
2) Serat Sintetis
Serat sintetis merupakan serat yang dibuat oleh manusia, bahan dasarnya tidak tersedia secara langsung dari alam. Contoh kain yang terbuat dari serat sintetis adalah :
  • Rayon
  • Polyester
  • Dakron 
  • Nilon
3) Serat Campuran
Penggunaan bahan-bahan alami dan sintetis dapat dicampurkan untuk memperbaiki kualitas bahan. Contoh tekstil dari bahan serat campuran adalah :
  • TC (Tetoron Cotton) campuran dari polyester dan katun.
  • TR (Tetoron Rayon) campuran dari polyester dan rayon.
Pemanfaatan tekstil dari berbagai macam serat didasarkan pada ciri-ciri seratnya antara lain kehalusan, kekuatan, daya serap, dan kemuluran atau elastisitas. Salah satu cara untuk menentukan ciri dari bahan serat dapat dilakukan dengan analisis pembakaran.
Karakteristik bahan serat :
  1. Serat kapas dari selulosa (kapas) memiliki karakteristik bahan terasa dingin dan sedikit kaku, mudah kusut, mudah menyerap keringat, rentan terhadap jamur dan mudah terbakar. Kalau terbakar nyalanya berjalan terus, berbau seperti kertas, dan meninggalkan abu berwarna kelabu.
  2. Serat linen dibandingkan dengan katun mempunyai ciri lebih halus, lebih kuat, berkilau lembut, kurang elastis, mudah kusut, tidak tahan seterika panas. Serat linen mudah terbakar, bila terbakar nyalanya berjalan terus, berbau seperti kertas terbakar, dan meninggalkan abu berwarna kelabu.
  3. Serat sutera mempunyai ciri-ciri berkilau, sangat bagus dan lembut, tidak mudah kusut, sangat halus, kekuatannya tinggi, dan kurang tahan terhadap sinar matahari. Mempunyai daya serap cukup tinggi, tidak mudah berjamur, sukar terbakar, cepat padam, berbau seperti rambut terbakar, bekas pembakaran berbentuk abu hitam, bulat, dan mudah dihancurkan.
  4. Serat wool, mempunyai ciri agak kuat, tidak berkilau, keriting, kekenyalan tinggi, elastisitas tinggi, dan merupakan penahan panas yang baik, tahan terhadap jamur dan bakteri. Pada pembakaran terbentuk gumpalan hitam dan berbau rambut terbakar.
  5. Serat asbes umumnya mempunyai kekuatan tarik yang tinggi, daya mulurnya sangat rendah, hanya sedikit menyerap air, sangat tahan panas dan api, dan tahan cuaca. Serat asbes merupakan penghantar listrik dan panas yang jelek, sehingga mineral asbes banyak dimanfaatkan untuk pelapis kabel listrik, sarung tangan, dan tirai.
  6. Serat nilon mempunyai ciri sangat kuat, ringan dan berkilau, elastisitas sangat kuat, tidak mudah kusut, tahan terhadap serangan jamur dan bakteri. Nilon tidak tahan panas, mudah terbakar, meleleh bila dibakar, berbau khas, serta meninggalkan bentuk pinggiran keras yang berwarna cokelat.
  7. Serat polyester mempunyai ciri elastisitasnya tinggi sehingga tidak mudah kusut, tahan terhadap sinar matahari, tahan suhu tinggi, daya serap air yang rendah, tahan terhadap jamur, bakteri, dan serangga. Apabila dibakar polyester mudah terbakar, tetapi apinya cepat padam, meninggalkan tepi yang keras dan berwarna cokelat muda.
  8. TC (Tetoron Cotton) dan TR (Tetoron Rayon) mempunyai ciri kurang dapat menyerap keringat dan agak panas di badan, tidak susut dan mengembang, apabila dibakar akan menghasilkan abu dan arang.
B. Bahan Karet

Karet dihasilkan oleh pohon karet (Hevea brasiliensis) berupa getah seperti susu yang disebut lateks.
Lateks diperoleh dengan cara menyadap, yaitu dengan menyayat kulit pohon atau pada bagian kortek tumbuhan tersebut.
Secara kimiawi karet alam adalah senyawa hidrokarbon yang merupakan polimer alam hasil penggumpalan lateks alam dan merupakan makromolekul poliisoprena (C5H8)n.
Karet sintetis terbuat dari bahan baku yang berasal dari minyak bumi, batu bara, minyak, gas alam, dan acetylene. Banyak dari karet sintetis adalah kopolimer, yaitu polimer yang terdiri dari lebih dari satu jenis monomer. Karet sintetis dapat diubah susunannya sehingga diperoleh sifat yang sesuai dengan kegunaannya.
Berikut beberapa jenis karet sintetis dengan sifat dan kegunaannya.
  1. NBR (Nytrile Butadiene Rubber). NBR memiliki ketahanan yang tinggi terhadap minyak, digunakan dalam pembuatan pipa karet untuk bensin dan minyak, membran, seal, gaskot, serta peralatan lain yang banyak dipakai dalam kendaraan bermotor.
  2. CR (Chloroprene Rubber), CR dengan ciri tahan terhadap nyala api, digunakan sebagai bahan pipa karet, pembungkus kabel, seal, gaskot, dan sabuk pengangkut.
  3. IIR (Isobutene Isoprene Rubber), IRR mempunyai sifat kedap air, digunakan untuk bahan ban bermotor, pembalut kawat listrik, pelapis bagian dalam tangki, tempat penyimpan lemak dan minyak.
C. Bahan Tanah Liat dan Keramik

Tanah liat merupakan bahan dasar yang dipakai dalam pembuatan keramik.
Secara kimiawi tanah liat termasuk hidrosilikat alumina.
Sifat fisik tanah liat yaitu plastis bila keadaan basah, keras bila kering, dan bila dibakar menjadi padat dan kuat.
Secara umum barang-barang yang dibuat dari tanah liat dinamakan keramik.
Namun, saat ini tidak semua keramik berasal dari tanah liat.
Keramik dibedakan menjadi dua kelompok yaitu :

1) Keramik tradisional

Keramik tradisional bahan bakunya dari tanah liat.
Berdasarkan komposisi tanah liat dan suhu pembakarannya, keramik tradisional dibedakan menjadi tembikar (terakota), gerabah (earthenware), keramik batu (stoneware), dan porselen (porcelain).
  • Terakota atau tembikar adalah produk yang bahan bakunya dari tanah liat dengan pembakaran sekitar 1000oC.
  • Gerabah adalah produk yang bahan bakunya dari tanah liat dengan pembakaran 1200oC.
  • Keramik batu adalah tanah liat dengan campuran bahan lain diantaranya kuarsa dan air, dibakar sampai suhu 1200oC-2000oC.
  • Porselin dibuat dari bahan yang mirip dengan keramik tetapi baru mulai matang pada pembakaran 15000oC.
2) Keramik halus

Keramik halus atau keramik teknik yang bahan bakunya dari oksida-oksida logam atau logam, seperti: oksida logam (Al2O3, ZrO2, MgO, dan lainnya).
Keramik halus ini penggunaanya sebagai elemen pemanas, semikonduktor, komponen turbin, dan pada bidang medis.
Peralatan yang diperlukan untuk membuat keramik, antara lain :
  • Mixer (untuk mengaduk bahan keramik)
  • Glasir (berfungsi mengkilapkan)
  • Cetakan gypsum
  • Penggiling glasir
  • Rak pengering
  • Pencelup glasir
  • Oven atau tungku pemanas
Teknik Pembuatan Keramik

Pembuatan keramik umumnya dilakukan dengan tiga teknik pembentukan keramik, yaitu:
  • Pembentukan tangan langsung (hand building).
  • Teknik putar (throwing), dan
  • Teknik cetak (casting).
Langkah-langkah pembuatan keramik sebagai berikut :

Tahap pembentukan, yaitu tahap pengubahan tanah liat plastis menjadi benda-benda yang dikehendaki.
  1. Pengeringan, bertujuan untuk menghilangkan air yang terikat pada badan keramik.
  2. Pembakaran, yaitu proses mengubah bahan yang rapuh menjadi bahan yang padat, keras, dan kuat.
  3. Glasir, untuk melapisi permukaan keramik melalui proses pengeringan. Glasir merupakan material yang terdiri atas beberapa bahan tanah atau batuan silikat yang akan membuat permukaan keramik seperti gelas yang mengkilap.
  4. Tahap pelukisan untuk memberikan hiasan dengan motif-motif yang menarik.
  5. Pembakaran kembali dalam oven dengan suhu lebih kurang 800o C.
  6. Pengemasan sesuai permintaan.
D. Bahan Gelas
Bahan gelas dan kaca yang digunakan oleh masyarakat prasejarah berasal dari kaca alami yang disebut obsidian.
Obsidian adalah produk sampingan alami dari letusan gunung berapi berupa benda yang tajam, mengkilap dengan warna hitam, orange, abu-abu, atau hijau.
Menurut catatan sejarah, kaca sudah diproduksi sejak tahun 4 SM (Sebelum Masehi) yaitu dengan bahan pasir kuarsit yang dipanaskan sampai meleleh kemudian dibiarkan dingin, dan terbentuklah benda keras yang tembus pandang.
Bahan baku pembuatan kaca ada dua kelompok yaitu :
  1. Bahan yang dibutuhkan dalam jumlah besar meliputi pasir silika, soda abu, batu kapur, feldspar dan pecahan gelas (cullet).
  2. Bahan yang dibutuhkan dalam jumlah kecil meliputi natrium sulfat, natrium bikromat, selenium dan arang. Pasir silika, batu kapur dan feldspar sangat melimpah di Indonesia.
Gelas aman digunakan sebagai kemasan karena beberapa sifat unggul berikut :
  • Kedap terhadap air, gas, bau-bauan dan mikroorganisme.
  • Tidak dapat bereaksi dengan barang yang dikemas (bahan kimia).
  • Dapat didaur ulang.
  • Dapat ditutup kembali setelah dibuka.
  • Tembus pandang sehingga isinya dapat dilihat.
  • Memberikan nilai tambah bagi produk (nilai estetika).
  • Kaku dan kuat sehingga dapat ditumpuk tanpa mengalami kerusakan.
  • Gelas dapat disimpan dalam jangka waktu panjang tanpa mengalami kerusakan.
Jenis kaca berbeda memiliki karakteristik fisik yang berbeda. Salah satu sifat fisik kaca adalah densitas atau kepadatan. Kepadatan adalah massa persatuan volume.
Keterangan :
ρ   = Massa Jenis (kg/m3 atau g/cm3)
m  = Massa benda (kg atau gram)
v   = Volume benda (m3 atau cm3)
E. Bahan Kayu

Tumbuhan di sekitar kita terdiri atas kelompok tumbuhan batang basah yang disebut herbaceus dan tumbuhan batang berkayu yang disebut lignosus. Selanjutnya, kelompok tumbuhan batang berkayu dibedakan antara perdu dan pohon. Pada umumnya kayu yang digunakan sebagai bahan untuk berbagai keperluan diperoleh dari kelompok tumbuhan berkayu berupa pohon.
Kayu digunakan untuk berbagai keperluan, mulai dari peralatan masak seperti sendok kayu, perabot (meja, kursi), bahan bangunan (pintu, jendela, rangka atap), bahan kertas, alat transportasi (perahu), dan banyak lagi. Kayu juga dapat dimanfaatkan sebagai hiasan-hiasan rumah tangga, aksesoris, dan cindera mata.
Kayu dimanfaatkan untuk berbagai keperluan karena mengandung komponen penting yaitu selulosa, lignin, dan senyawa ekstraktif (senyawa tertentu yang dapat diambil dari kayu).
  • Selulosa merupakan senyawa polimer turunan dari glukosa, dapat mencapai 70% dari berat kayu. Selulosa merupakan bahan utama pembuatan kertas dan tekstil.
  • Lignin merupakan komponen pembentuk kayu, meliputi 18-28% berat kayu. Secara kimiawi, kayu keras dan kayu lunak dibedakan pada jumlah dan jenis lignin yang terkandung di dalamnya.
  • Senyawa ekstraktif dapat berupa zat warna, getah, resin, lilin, dan lainnya, yang jumlah dan jenisnya tergantung spesies pohonnya. Senyawa ekstraktif ini memiliki manfaat seperti melindungi kayu dari hama. Senyawa ekstraktif merupakan salah satu dari hasil hutan nonkayu.
Pemanfaatan kayu disesuaikan dengan sifat-sifatnya. Kayu dari jenis pohon yang berbeda mempunyai sifat yang berbeda. Pengenalan atas sifat-sifat akan sangat membantu dalam menentukan jenis-jenis kayu untuk tujuan pengunaan tertentu.
Berikut beberapa sifat kayu :

1) Bobot dan Berat Jenis

Bobot suatu jenis kayu bergantung pada kandungan zat kayu, jumlah poripori, zat ekstraktif, dan kadar air. Bobot kayu ditunjukkan dengan berat jenis (BJ) kayu, dan dipakai sebagai patokan kualitas kayu. Berdasarkan berat jenisnya, kayu digolongkan menjadi empat, yaitu: sangat berat dengan BJ > 90; berat dengan BJ 0,75-0,90; sedang dengan BJ 0,60-0,75; dan ringan dengan BJ <60. Berat jenis berhubungan dengan kekuatan kayu. Pada umumnya makin tinggi BJ kayu, kayu tersebut semakin kuat pula.

2) Keawetan

Keawetan adalah daya tahan kayu terhadap serangan hama dan penyakit perusak kayu, misalnya serangga dan jamur. Keawetan kayu disebabkan kandungan senyawa ekstraktif di dalam kayu. Kayu jati memiliki senyawa ekstraktif tectoquinon, kayu ulin mengandung silika. Kedua jenis kayu tersebut memiliki tingkat keawetan yang tinggi.

3) Warna

Kayu yang beraneka warna macamnya disebabkan oleh zat pengisi warna dalam kayu yang berbeda-beda. Warna kayu juga dipengaruhi oleh posisinya dalam batang, umur pohon dan lingkungan. Kayu dari pohon yang tua warnanya lebih gelap dari kayu yang masih muda meskipun jenisnya sama. Kayu kering warnanya berbeda dengan kayu basah.

4) Tekstur

Tekstur adalah ukuran relatif serat kayu, yang teksturnya kasar, sedang, dan halus. Arah serat adalah alur-alur yang terdapat pada permukaan kayu terhadap sumbu batang. Arah serat dapat dibedakan menjadi serat lurus, serat berpadu, serat berombak, serta terpilin dan serat diagonal (serat miring). 

5) Kesan Raba

Kesan raba adalah kesan yang diperoleh pada saat meraba permukaan kayu (kasar, halus, licin, dingin, berminyak, dan lainnya). Kesan raba tiap jenis kayu berbeda-beda tergantung dari tekstur kayu, kadar air, dan kadar zat ekstraktif dalam kayu.

6) Bau dan Rasa

Bau dan rasa kayu mudah hilang bila kayu lama tersimpan di udara terbuka. Beberapa jenis kayu mempunyai bau yang merangsang. Untuk menyatakan bau kayu tersebut, sering digunakan bau sesuatu benda yang umum dikenal misalnya bau bawang (kayu kulim) dan bau zat penyamak (kayu jati).

7) Nilai Dekoratif

Nilai dekoratif berhubungan dengan keindahan. Nilai dekoratif kayu tergantung dari pola penyebaran warna, arah serat, tekstur, dan pemunculan pola-pola tertentu.

8) Kekerasan atau Densitas 

Kekerasan kayu berhubungan langsung dengan bobot kayu. Kayu-kayu yang keras juga termasuk kayu yang berat. Kayu-kayu yang ringan termasuk kayu yang lunak.

Berdasarkan kekerasannya kayu digolongkan menjadi dua, yaitu kayu lunak (soft wood) dan kayu keras (hard wood).
  • Kayu lunak yaitu kayu yang yang berasal dari tumbuhan yang berdaun seperti jarum misalnya pinus. Ciri fisik kayu lunak memiliki lubang pori-pori besar.
  • Kayu keras berasal dari tumbuhan yang daunnya lebar misalnya jati dan mahoni. Ciri fisik kayu keras adalah serat kayunya berbentuk bulat telur atau spiral, dan ikatan antarpori-porinya lebih kuat.
Densitas diukur dalam satuan kg/m3
Rata-rata densitas kayu yang ada adalah sekitar 320 - 720 kg/m3
Ada beberapa jenis kayu yang sangat lunak hingga 160 kg/m3 dan paling tinggi kekerasan kayu pada level 1.000 kg/m3.

sumber : http://sains2day.blogspot.co.id/2014/09/sifat-bahan-pemanfaatannya-dlm.html

Senin, 15 Januari 2018

Bioteknologi

A. PENGERTIAN BIOTEKNOLOGI
Bioteknologi adalah pemanfaatan prinsip-prinsip ilmiah yang
menggunakan makhluk hidup untuk menghasilkan produk dan jasa
guna kepentingan manusia. Ilmu-ilmu pendukung dalam bioteknologi
meliputi mikrobiologi, biokimia, genetika, biologi sel, teknik
kimia, dan enzimologi. Dalam bioteknologi biasanya digunakan
mikroorganisme atau bagian-bagiannya untuk meningkatkan nilai
tambah suatu bahan

B. BIOTEKNOLOGI KONVENSIONAL DAN MODERN
Bioteknologi dapat digolongkan menjadi bioteknologi konvensional/
tradisional dan modern. Bioteknologi konvensional merupakan
bioteknologi yang memanfaatkan mikroorganisme untuk
memproduksi alkohol, asam asetat, gula, atau bahan makanan,
seperti tempe, tape, oncom, dan kecap.
Mikroorganisme dapat mengubah bahan pangan. Proses
yang dibantu mikroorganisme, misalnya dengan fermentasi, hasilnya
antara lain tempe, tape, kecap, dan sebagainya termasuk keju
dan yoghurt. Proses tersebut dianggap sebagai bioteknologi masa
lalu. Ciri khas yang tampak pada bioteknologi konvensional, yaitu
adanya penggunaan makhluk hidup secara langsung dan belum tahu
adanya penggunaan enzim

1. Pengolahan Bahan Makanan
a. Pengolahan produk susu
Susu dapat diolah menjadi bentuk-bentuk baru, seperti
yoghurt, keju, dan mentega.
1) Yoghurt
Untuk membuat yoghurt, susu dipasteurisasi terlebih dahulu,
selanjutnya sebagian besar lemak dibuang. Mikroorganisme
yang berperan dalam pembuatan yoghurt, yaitu Lactobacillus
bulgaricusdan Streptococcus thermophillus. Kedua bakteri tersebut
ditambahkan pada susu dengan jumlah yang seimbang, selanjutnya
disimpan selama ± 5 jam pada temperatur 45oC. Selama penyimpanan
tersebut pH akan turun menjadi 4,0 sebagai akibat dari kegiatan
bakteri asam laktat. Selanjutnya susu didinginkan dan dapat
diberi cita rasa.

2) Keju
Dalam pembuatan keju digunakan bakteri asam laktat, yaitu
Lactobacillus dan Streptococcus. Bakteri tersebut berfungsi
memfermentasikan laktosa dalam susu menjadi asam laktat.
Proses pembuatan keju diawali dengan pemanasan susu
dengan suhu 90oC atau dipasteurisasi, kemudian didinginkan sampai
30oC. Selanjutnya bakteri asam laktat dicampurkan. Akibat dari
kegiatan bakteri tersebut pH menurun dan susu terpisah menjadi
cairan whey dan dadih padat, kemudian ditambahkan enzim renin
dari lambung sapi muda untuk mengumpulkan dadih. Enzim renin
dewasa ini telah digantikan dengan enzim buatan, yaitu klimosin.
Dadih yang terbentuk selanjutnya dipanaskan pada temperatur
32oC – 420oC dan ditambah garam, kemudian ditekan untuk
membuang air dan disimpan agar matang. Adapun whey yang
terbentuk diperas lalu digunakan untuk makanan sapi.

3) Mentega
Pembuatan mentega menggunakan mikroorganisme Streptococcus
lactis dan Lectonostoceremoris. Bakteri-bakteri tersebut
membentuk proses pengasaman. Selanjutnya, susu diberi cita rasa
tertentu dan lemak mentega dipisahkan. Kemudian lemak mentega
diaduk untuk menghasilkan mentega yang siap dimakan.

b. Produk makanan nonsusu
1) Kecap
Dalam pembuatan kecap, jamur, Aspergillus oryzae dibiakkan
pada kulit gandum terlebih dahulu. Jamur Aspergillus oryzae
bersama-sama dengan bakteri asam laktat yang tumbuh pada kedelai
yang telah dimasak menghancurkan campuran gandum.
Setelah proses fermentasi karbohidrat berlangsung cukup lama
akhirnya akan dihasilkan produk kecap.
2) Tempe
Tempe kadang-kadang dianggap sebagai bahan makanan
masyarakat golongan menengah ke bawah, sehingga masyarakat
merasa gengsi memasukkan tempe sebgai salah satu menu makanannya.
Akan tetapi, setelah diketahui manfaatnya bagi kesehatan,
tempe mulai banyak dicari dan digemari masyarakat dalam
maupun luar negeri. Jenis tempe sebenarnya sangat beragam, bergantung
pada bahan dasarnya, namun yang paling luas penyebarannya
adalah tempe kedelai.
Tempe mempunyai nilai gizi yang baik. Di samping itu tempe
mempunyai beberapa khasiat, seperti dapat mencegah dan mengendalikan
diare, mempercepat proses penyembuhan duodenitis, memperlancar
pencernaan, dapat menurunkan kadar kolesterol, dapat
mengurangi toksisitas, meningkatkan vitalitas, mencegah anemia,
menghambat ketuaan, serta mampu menghambat resiko jantung
koroner, penyakit gula, dan kanker.
Untuk membuat tempe, selain diperlukan bahan dasar kedelai
juga diperlukan ragi. Ragi merupakan kumpulan spora mikroorganisme,
dalam hal ini kapang. Dalam proses pembuatan tempe
paling sedikit diperlukan empat jenis kapang dari genus Rhizopus,
yaitu Rhyzopus oligosporus, Rhyzopus stolonifer, Rhyzopus
arrhizus, dan Rhyzopus oryzae. Miselium dari kapang tersebut akan
mengikat keping-keping biji kedelai dan memfermentasikannya
menjadi produk tempe. Proses fermentasi tersebut menyebabkan
terjadinya perubahan kimia pada protein, lemak, dan karbohidrat.
Perubahan tersebut meningkatkan kadar protein tempe sampai
sembilan kali lipat.
c) Tape
Tape dibuat dari bahan dasar ketela pohon dengan
menggunakan sel-sel ragi. Ragi menghasilkan enzim yang dapat
mengubah zat tepung menjadi produk yang berupa gula dan
alkohol. Masyarakat kita membuat tape tersebut berdasarkan
pengalaman.
2. Bioteknologi Bidang Pertanian
a. Penanaman secara hidroponik
Hidroponik berasal dari kata bahasa Yunani hydro yang berarti
air dan ponos yang berarti bekerja. Jadi, hidroponik artinya
pengerjaan air atau bekerja dengan air. Dalam praktiknya hidroponik
dilakukan dengan berbagai metode, tergantung media yang digunakan.
Adapun metode yang digunakan dalam hidroponik, antara
lain metode kultur air (menggunakan media air), metode kultur pasir
(menggunakan media pasir), dan metode porus (menggunakan
media kerikil, pecahan batu bata, dan lain-lain). Metode yang tergolong
berhasil dan mudah diterapkan adalah metode pasir.
Pada umumnya orang bertanam dengan menggunakan tanah.
Namun, dalam hidroponik tidak lagi digunakan tanah, hanya
dibutuhkan air yang ditambah nutrien sebagai sumber makanan bagi
tanaman. Apakah cukup dengan air dan nutrien? Bahan dasar yang
dibutuhkan tanaman adalah air, mineral, cahaya, dan CO2. 
Cahayatelah terpenuhi oleh cahaya matahari. Demikian pula CO2 sudah
cukup melimpah di udara. Sementara itu kebutuhan air dan mineral
dapat diberikan dengan sistem hidroponik, artinya keberadaan tanah
sebenarnya bukanlah hal yang utama.
Beberapa keuntungan bercocok tanam dengan hidroponik,
antara lain tanaman dapat dibudidayakan di segala tempat; risiko
kerusakan tanaman karena banjir, kurang air, dan erosi tidak ada;
tidak perlu lahan yang terlalu luas; pertumbuhan tanaman lebih
cepat; bebas dari hama; hasilnya berkualitas dan berkuantitas tinggi;
hemat biaya perawatan.
Jenis tanaman yang telah banyak dihidroponikkan dari
golongan tanaman hias antara lain Philodendron, Dracaena, Aglonema,
dan Spatyphilum. Golongan sayuran yang dapat dihidroponikkan,
antara lain tomat, paprika, mentimun, selada, sawi, kangkung,
dan bayam. Adapun jenis tanaman buah yang dapat dihidroponikkan,
antara lain jambu air, melon, kedondong bangkok, dan
belimbing.
b. Penanaman secara aeroponik
Aeroponik berasal dari kata aero yang berarti udara dan
ponos yang berarti daya. Jadi, aeroponik adalah pemberdayaan
udara. Sebenarnya aeroponik merupakan tipe hidroponik (memberdayakan
air), karena air yang berisi larutan unsur hara disemburkan
dalam bentuk kabut hingga mengenai akar tanaman. Akar
tanaman yang ditanam menggantung akan menyerap larutan hara
tersebut.
Prinsip dari aeroponik adalah sebagai berikut. Helaian
styrofoam diberi lubang-lubang tanam dengan jarak 15 cm. Dengan
menggunakan ganjal busa atau rockwool, anak semai sayuran
ditancapkan pada lubang tanam. Akar tanaman akan menjuntai
bebas ke bawah. Di bawah helaian styrofoam terdapat sprinkler
(pengabut) yang memancarkan kabut larutan hara ke atas hingga
mengenai akar.
3. Bioteknologi Modern
Seiring dengan perkembangan ilmu pengetahuan, para ahli
telah mulai lagi mengembangkan bioteknologi dengan memanfaatkan
prinsip-prinsip ilmiah melalui penelitian. Dalam bioteknologi
modern orang berupaya dapat menghasilkan produk secara efektif
dan efisien.
Dewasa ini, bioteknologi tidak hanya dimanfaatkan dalam
industri makanan tetapi telah mencakup berbagai bidang, seperti
rekayasa genetika, penanganan polusi, penciptaan sumber energi,
dan sebagainya. Dengan adanya berbagai penelitian serta perkembangan
ilmu pengetahuan dan teknologi, maka bioteknologi makin
besar manfaatnya untuk masa-masa yang akan datang. Beberapa
penerapan bioteknologi modern sebagai berikut.
a. Rekayasa genetika
Rekayasa genetika merupakan suatu cara memanipulasikan
gen untuk menghasilkan makhluk hidup baru dengan sifat yang
diinginkan. Rekayasa genetika disebut juga pencangkokan gen atau
rekombinasi DNA.
Dalam rekayasa genetika digunakan DNA untuk menggabungkan
sifat makhluk hidup. Hal itu karena DNA dari setiap
makhluk hidup mempunyai struktur yang sama, sehingga dapat
direkomendasikan. Selanjutnya DNA tersebut akan mengatur sifatsifat
makhluk hidup secara turun-temurun.
Untuk mengubah DNA sel dapat dilakukan melalui banyak
cara, misalnya melalui transplantasi inti, fusi sel, teknologi plasmid,
dan rekombinasi DNA.

1) Transplantasi inti
Transplantasi inti adalah pemindahan inti dari suatu sel ke sel
yang lain agar didapatkan individu baru dengan sifat sesuai dengan
inti yang diterimanya. Transplantasi inti pernah dilakukan terhadap
sel katak. Inti sel yang dipindahkan adalah inti dari sel-sel usus katak
yang bersifat diploid. Inti sel tersebut dimasukkan ke dalam ovum
tanpa inti, sehingga terbentuk ovum dengan inti diploid. Setelah
diberi inti baru, ovum membelah secara mitosis berkali-kali
sehingga terbentuklah morula yang berkembang menjadi blastula.
Blastula tersebut selanjutnya dipotong-potong menjadi banyak sel
dan diambil intinya. Kemudian inti-inti tersebut dimasukkan ke
dalam ovum tanpa inti yang lain. Pada akhirnya terbentuk ovum
berinti diploid dalam jumlah banyak. Masing-masing ovum akan
berkembang menjadi individu baru dengan sifat dan jenis kelamin
yang sama.
2) Fusi sel
Fusi sel adalah peleburan dua sel baik dari spesies yang sama
maupun berbeda supaya terbentuk sel bastar atau hibridoma. Fusi
sel diawali oleh pelebaran membran dua sel serta diikuti oleh
peleburan sitoplasma (plasmogami) dan peleburan inti sel (kariogami).
Manfaat fusi sel, antara lain untuk pemetaan kromosom,
membuat antibodi monoklonal, dan membentuk spesies baru. Di
dalam fusi sel diperlukan adanya:
a) sel sumber gen (sumber sifat ideal);
b) sel wadah (sel yang mampu membelah cepat);
c) fusigen (zat-zat yang mempercepat fusi sel).
3) Teknologi plasmid
Plasmid adalah lingkaran DNA kecil yang terdapat di dalam
sel bakteri atau ragi di luar kromosomnya. Sifat-sifat plasmid, antara
lain:
a) merupakan molekul DNA yang mengandung gen tertentu;
b) dapat beraplikasi diri;
c) dapat berpindah ke sel bakteri lain;
d) sifat plasmid pada keturunan bakteri sama dengan plasmid induk.
Karena sifat-sifat tersebut di atas plasmid digunakan sebagai
vektor atau pemindah gen ke dalam sel target.
4) Rekombinasi DNA
Rekombinasi DNA adalah proses penggabungan DNA-DNA
dari sumber yang berbeda. Tujuannya adalah untuk menyambungkan
gen yang ada di dalamnya. Oleh karena itu, rekombinasi
DNA disebut juga rekombinasi gen.
Rekombinasi DNA dapat dilakukan karena alasan-alasan
sebagai berikut.
1) Struktur DNA setiap spesies makhluk hidup sama.
2) DNA dapat disambungkan
b. Bioteknologi bidang kedokteran
Bioteknologi mempunyai peran penting dalam bidang kedokteran,
misalnya dalam pembuatan antibodi monoklonal, vaksin,
antibiotika dan hormon.
1) Pembuatan antibodi monoklonal
Antibodi monoklonal adalah antibodi yang diperoleh dari
suatu sumber tunggal. Manfaat antibodi monoklonal, antara lain:
a) untuk mendeteksi kandungan hormon korionik gonadotropin dalam
urine wanita hamil;
b) mengikat racun dan menonaktifkannya;
c) mencegah penolakan tubuh terhadap hasil transplantasi jaringan
lain.
2) Pembuatan vaksin
Vaksin digunakan untuk mencegah serangan penyakit terhadap
tubuh yang berasal dari mikroorganisme. Vaksin didapat dari
virus dan bakteri yang telah dilemahkan atau racun yang diambil
dari mikroorganisme tersebut.
3) Pembuatan antibiotika
Antibiotika adalah suatu zat yang dihasilkan oleh organisme
tertentu dan berfungsi untuk menghambat pertumbuhan organisme
lain yang ada di sekitarnya. Antibiotika dapat diperoleh dari jamur
atau bakteri yang diproses dengan cara tertentu.
Zat antibiotika telah mulai diproduksi secara besar-besaran
pada Perang Dunia II oleh para ahli dari Amerika Serikat dan
Inggris.
4) Pembuatan hormon
Dengan rekayasa DNA, dewasa ini telah digunakan mikroorganisme
untuk memproduksi hormon. Hormon-hormon yang
telah diproduksi, misalnya insulin, hormon pertumbuhan, kortison,
dan testosteron.

c. Bioteknologi bidang pertanian
Dewasa ini perkembangan industri maju dengan pesat.
Akibatnya, banyak lahan pertanian yang tergeser, lebih-lebih di
daerah sekitar perkotaan. Di sisi lain kebutuhan akan hasil pertanian
harus ditingkatkan seiring dengan meningkatnya jumlah penduduk.
Untuk mendukung hal tersebut, dewasa ini telah dikembangkan
bioteknologi di bidang pertanian. Beberapa penerapan bioteknologi
pertanian sebagai berikut.
1) Pembuatan tumbuhan yang mampu mengikat nitrogen
Nitrogen (N2) merupakan unsur esensial dari protein DNA
dan RNA. Pada tumbuhan polong-polongan sering ditemukan nodul
pada akarnya. Di dalam nodul tersebut terdapat bakteri Rhizobium
yang dapat mengikat nitrogen bebas dari udara, sehingga tumbuhan
polong-polongan dapat mencukupi kebutuhan nitrogennya sendiri.
Dengan bioteknologi, para peneliti mencoba mengembangkan
agar bakteri Rhizobium dapat hidup di dalam akar selain tumbuhan
polong-polongan. Di samping, itu juga berupaya meningkatkan
kemampuan bakteri dalam mengikat nitrogen dengan teknik
rekombinasi gen.
Kedua upaya di atas dilakukan untuk mengurangi atau meniadakan
penggunaan pupuk nitrogen yang dewasa ini banyak
digunakan di lahan pertanian dan menimbulkan efek samping yang
merugikan.
2) Pembuatan tumbuhan tahan hama
Tanaman yang tahan hama dapat dibuat melalui rekayasa
genetika dengan rekombinasi gen dan kultur sel. Contohnya, untuk
mendapatkan tanaman kentang yang kebal penyakit maka diperlukan
gen yang menentukan sifat kebal penyakit. Gen tersebut, kemudian
disisipkan pada sel tanaman kentang. Sel tanaman kentang
tersebut, kemudian ditumbuhkan menjadi tanaman kentang yang
tahan penyakit. Selanjutnya tanaman kentang tersebut dapat diperbanyak
dan disebarluaskan.

d. Bioteknologi bidang peternakan
Dengan bioteknologi dapat dikembangkan produk-produk
peternakan. Produk tersebut, misalnya berupa hormon pertumbuhan
yang dapat merangsang pertumbuhan hewan ternak. Dengan
rekayasa genetika dapat diciptakan hormon pertumbuhan hewan
buatan atau BST (Bovin Somatotropin Hormon). Hormon tersebut
direkayasa dari bakteri yang, jika diinfeksikan pada hewan dapat
mendorong pertumbuhan dan menaikkan produksi susu sampai
20%.

e. Bioteknologi bahan bakar masa depan
Kamu sudah mengetahui bahwa bahan bakar minyak
termasuk sumber daya yang tidak bisa diperbarui. Oleh karena itu,
suatu saat akan habis. Hal itu merupakan tantangan bagi para
ilmuwan untuk menemukan bahan bakar pengganti yang diproduksi
melalui bioteknologi.
Saat ini telah ditemukan dua jenis bahan bakar yang diproduksi
dari fermentasi limbah, yaitu gasbio (metana) dan gasahol
(alkohol).
Alternatif bahan bakar masa depan untuk menggantikan
minyak, antara lain adalah biogas dan gasohol. Biogas dibuat dalam
fase anaerob dalam fermentasi limbah kotoran makhluk hidup. Pada
fase anaerob akan dihasilkan gas metana yang dibakar dan digunakan
untuk bahan bakar.
Di negara Cina, dan India terdapat beberapa kelompok masyarakat
yang hidup di desa yang telah menerapkan teknologi
fermenter gasbio untuk menghasilkan metana. Bahan baku teknologi
fermenter tersebut adalah feses hewan, daun-daunan, kertas,
dan lain-lain yang akan diuraikan oleh bakteri dalam fermenter.
Sedangkan teknologi gasohol telah dikembangkan oleh
negara Brazil sejak harga minyak meningkat sekitar tahun 1970.
Gasohol dihasilkan dari fermentasi kapang terhadap gula tebu yang
melimpah. Gasohol bersifat murah, dapat diperbarui dan tidak
menimbulkan polusi.

f. Bioteknologi pengolahan limbah
Kaleng, kertas bekas, dan sisa makanan, sisa aktivitas
pertanian atau industri merupakan bahan yang biasanya sudah tak
dikehendaki oleh manusia. Bahan-bahan tersebut dinamakan limbah
atau sampah. Keberadaan limbah sangat mengancam lingkungan.
Oleh karena itu, harus ada upaya untuk menanganinya. Penanganan
sampah dapat dilakukan dengan berbagai cara, misalnya dengan
ditimbun, dibakar, atau didaur ulang. Di antara semua cara tersebut
yang paling baik adalah dengan daur ulang.
Salah satu contoh proses daur ulang sampah yang telah diuji
pada beberapa sampah tumbuhan adalah proses pirolisis. Proses
pirolisis yaitu proses dekomposisi bahan-bahan sampah dengan
suhu tinggi pada kondisi tanpa oksigen. Dengan cara ini sampah
dapat diubah menjadi arang, gas (misal: metana) dan bahan
anorganik.
Bahan-bahan tersebut dapat dimanfaatkan kembali sebagai
bahan bakar. Kelebihan bahan bakar hasil proses ini adalah
rendahnya kandungan sulfur, sehingga cukup mengurangi tingkat
pencemaran. Bahan hasil perombakan zat-zat makroorganik (dari
hewan, tumbuhan, manusia ataupun gabungannya) secara biologiskimiawi
dengan bantuan mikroorganisme (misalnya bakteri, jamur)
serta oleh hewan-hewan kecil disebut kompos.
Dalam pembuatan kompos, sangat diperlukan mikroorganisme.
Jenis mikroorganisme yang diperlukan dalam pembuatan kompos
bergantung pada bahan organik yang digunakan serta proses
yang berlangsung (misalnya proses itu secara aerob atau anaerob).
Selama proses pengomposan terjadilah penguraian, misalnya
selulosa, pembentukan asam organik terutama asam humat yang
penting dalam pembuatan humus. Hasil pengomposan bermanfaat
sebagai pupuk.
Bioteknologi dapat diterapkan dalam pengolahan limbah,
misalnya menguraikan minyak, air limbah, dan plastik. Cara lain
dalam mengatasi polusi minyak, yaitu dengan menggunakan
pengemulsi yang menyebabkan minyak bercampur dengan air
sehingga dapat dipecah oleh mikroba. Salah satu zat pengemulsi,
yaitu polisakarida yang disebut emulsan, diproduksi oleh bakteri
Acinetobacter calcoaceticus. Dengan bioteknologi, pengolahan
limbah menjadi terkontrol dan efektif. Pengolahan limbah secara
bioteknologi melibatkan kerja bakteri-bakteri aerob dan anaerob.

Sumber : https://winaraku.wordpress.com/tag/bioteknologi-konvensional-dan-modern/